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The simple variation of the physical properties of isoelectronic molecules with nuclear charge 
and internuclear distance is shown to be the result of a symmetry property of their Hamiltonians and 
operators under the continuous group L(l). 

Es wird gezeigt, dab bei isoelektronischen Molekiilen die Anderung der physikalischen Eigen- 
schaften in Abh~ingigkeit yon Kernladung und internuklearem Abstand aus einer Symmetrieeigen- 
schaft ihrer Hamiltonoperatoren und Operatoren der kontinuierlichen Gruppe L(l) resultieren. 

1. Introduction 

In a series of papers [1-3] we have shown that the N M R  shielding constants 
of a sequence of isoelectronic atoms or molecules are rigorously interrelated in a 
simple way. This result is valid even in the presence of electron-electron repulsion 
[3 I. Although we have used the N M R  shielding constant as an example, the same 
could be said for many other properties. 

More precisely, and by way of summary of the previous work, the first- and 
second-order properties defined as 

~,~l) _- ( ' / ' , l a  I r  (1) 
~ 2 ) =  ~ <q,,IAI4~,,> <4,, , IBI~, .>/(E,-E, , ) ,  

m:#n 

in the case of homonuclear  diatomic molecules have been shown to be given by 

~ 1) = Z(~'- ~) g(1)(ZR, z /Z)  , 

.~n(2) = Z ( a ,  - ~x + f l '  - 6 - 2 ) g ( 2 )  (Z R, z /Z)  , (2) 

respectively. In the equations above q~, is an eigenfunction of the electronic 
SchrOdinger equation 

He (J~n = (Te + V) q~. = E. q~., (3) 

Where T e is the total electronic kinetic energy and V is the total potential 
energy 

V = - - k : l  Irk--R~21 + Irk+R~21 + . I rk - - r j l  (4) 

A and B are, respectively, appropriate homogeneous operators [2] of degree 
and/~ in the position variables r and R and of degree ~' and/~' in the nuclear charges. 
6 Theoret. chim. Acta (Bed.) Vol. 28 



82 B.J. Laurenzi: 

The functions gtl) and g(2) can in principle be determined from the boundary 
conditions [1]. Eqs. (2) make it clear that if we determine a property for one mem- 
ber of an isoelectronic sequence that all of them are determined; electron correla- 
tion having been taken care of in that one member-once and for all. Further, the 
equation is useful as a check on numerical calculations and gives assurance that 
one can interpolate between numerical results. 

In obtaining Eqs. (2) the virial theorem [4] as well as the homogeniety of A 
and B were used. However, the results seemed to be of such a general and rigorous 
nature that it was felt that perhaps there was a more fundamental reason for their 
validity. This is indeed the case as we shall show below. We have found that 
Eqs. (2) arise as a result of the symmetry properties of the physical properties 
under the linear group L(l) [5]. Indeed, one might say that isoelectronic atoms 

and molecules behave similarly because of the symmetry of their Hamiltonians 
and physical properties under L(l). In view of the impact which the theory of 
symmetry is having in all branches of science we feel that it is worthwhile pointing 
out its underlying presence in the theory ofisoelectronic species. 

2. Theory 

A. The Group SL(2) 

For  simplicity we will consider only one-electron, homonuclear diatomic 
molecules. More complicated cases can be treated using the same methods. 

The set of operators S(a) which transform the internuclear distance R and 
the nuclear charge Z according to 

S(a)R = aR, 
0 < a <  ~ (5) 

S(a) Z = a- 1 Z, 

is an example of a one-parameter (a) continuous Lie Group. In fact, it is the 
special linear group SL(2) [5]. This is a simple, non-compact, Abelian group. The 
group elements corresponding to the identity and inverse are S(1) and S(a-1) 
respectively. We note also that the quantity ZR is invariant under the group. 

A representation of the infinitesimal transformation (away from the identity) 
can be obtained as follows. We have for small 6a 

S(1 + 6a)R = (1 + 6a)R, (6) 

S(1 + 6a)Z = (1 + 6a)-  1Z = (1 - 6a)Z, 

which can be written as 

( [ -z72-  R S ( I + 6 a ) R =  l +6a R-~ff 

S(I+6a)Z= (I+6aIR ~ - ~ - Z  oO~-])Z. (7) 

The operator in square brackets is called the generator of the infinitesimal trans- 
formation and will be denoted by ~--. 
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In addition to the operators S(a) we introduce agroup of operators O~ which 
is isomorphic to S. These act on functions and in keeping with the usual con- 
ventions 1-6] we have 

O~f (R,Z) = f (S - a R,S - ~ Z) , 
(8) 

O~(f g) = (O J )  (O~g). 

It is not difficult to show that the generator of the infinitesimal transformation 
determines the form of the operators O~ and in fact it is [5] 

O J ( R , Z )  = exp ( -  [ln a ] J ' ) f ( R , Z ) .  (9) 

B. 7-he Physical Properties 

We begin by considering the effect of 0 s on the electronic energy of a one- 
electron, homonuclear diatomic molecule. Or, more conveniently we consider 
the effect of Os on E, /Z  2. We have 

Os(En/Z2) = S (Os ~n) (OsHe/Z2) (Os ~bn) dr.  (10) 

Since the electronic wave function has the general form [7] 4 ,  = Z 3/2 ~ (ZR ,  Zr) 
it is clear that 

Os~n(Z,R, r)= a 3/2 ~n(Z,R, ar), (11) 

further, the result for the Hamiltonian is just 

0 s [He(r)/g 2"] = [He(ar)/Z2]. (12) 

As a consequence of these two equations Eq. (10) becomes 

OAE,,/Z 2) = (E,/Z2) . (13) 

The quantity (E,/Z 2) is invariant under the group SL(2). This alone establishes 
the fact that (E,/Z 2) is a function of only the invariant quantity ZR. More formally 
one has 

exp ( -  [In a] ~'-) (En/Z 2) = (En/Z2). (14) 

However, in order for this equation to be valid for all values of a we must have 

(E,/Z 2) = 0, (15) 

which leads to 

R ~-~  - Z-~-~ E ,=  - 2E,. (16) 

This partial differential equation for the electronic energy had been obtained in 
a previous paper [1]. There it was found that the general solution is 

E.(Z, R) = Z 2 E. (Z R), (17) 

where E,,(R) is the energy for the molecule H~. 
6* 
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Next ,  we cons ider  the first- and  s econd-o rde r  p roper t i e s  whose ope ra to r s  are  
h o m o g e n e o u s  funct ions  of degree c~ in r and  R and  e '  in Z,  i.e. 

A(ar ,  aR ,  Z)  = a ~ A ( r , R , Z ) ,  
(18) 

and A ( r , R ,  a Z ) = a ~ ' A ( r , R , Z ) .  

Using  these equa t ions  we find tha t  

OsA ( r , R , Z )  = a(~-~') A (ar, R , Z )  (19) 

and  so we are  led to the  resul t  

Os (r 1)/Z~ ~') = (r ~ ) /Z ~ - ~") , (20) 

as before. The  second-o rde r  p rope r t i e s  go t h rough  in the same way. 
In o rde r  to include the effect of e lec t ron-e lec t ron  repuls ion  it is only  necessary 

to cons ider  the  g roup  L(3) which is i s o m o r p h i c  to  [8]  S L  (2), i.e. 

T ( a ) R  = a R ,  

T ( a ) Z  = a -  t Z ,  (21) 

r ( a ) z  = a -  1 z .  

Here  the gene ra to r  (~o) is 

8 8 8 (22) 
~L~~ = R  ~ - Z ~ - z  ~z 

Wi th  the help of  funct ional  ope ra to r s  O r, toge ther  wi th  the same reasoning  which 
was used above  we ob ta in  Eqs. (2). 

Hav ing  es tabl i shed  a connec t ion  be tween G r o u p  Theo ry  and  the theory  of  
i soelec t ronic  systems it is h o p e d  tha t  this powerfu l  and  e n o r m o u s  field of ma the -  
mat ics  will shed fur ther  l ight on the regular i t ies  observed in these systems as well 
as uncover ing  new ones. 
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